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Abstract

We consider the problem of being presented with up to n options in
sequence, and determining when to stop and accept the latest option.
Once rejected, an option will not again be offered. Each option has
a known probability of being offered, but nothing is known about
the sequence in which options will actually be offered. Each option
has a known, finite positive value. We present an algorithm which
maximizes the likelihood of accepting the best offered option.
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1 Introduction

Suppose a young lady is eagerly anticipating the upcoming prom. Of course,

she will need a date. For each of the n young men whom she thinks might

ask her, she has estimated the probability that he will ask, together with his

desirability, with the most desirable boy having desirability equal to 1, and

every boy having a desirability greater than 0. These data are represented

by the variables p1, p2, p3, . . . , pn−1, pn and x1, x2, x3, . . . , xn−1, respectively,

with the indexing indicating desirability ordering, i.e. i < j implies xi 6 xj.

Since she has included only boys whom she thinks might ask her, all of the pi

1



are positive. She doesn’t know for certain which boys are willing to ask her.

By ”the boys who are willing to ask her,” we mean the set of boys who would

ask her if she rejected every boy who asked. She assumes that the boys who

are willing to ask will do so in no particular order, that their invitations are

independent of one another, and that each possible ordering of these boys’

invitations is equally likely. The desirability of a boy who hasn’t asked her

is independent of the desirability of boys who have asked and been rejected.

Once she refuses a boy, he will not ask again. If she happens to refuse every

boy that asks, she will end up with no date for the prom, a payoff of 0. If

pi < 1 for every i, it’s possible that no boy will ask, yielding her a payoff of

0. In this article we assume that her objective is to maximize the likelihood

of accepting the invitation of the most desirable boy who is willing to ask

her.

2 The First-ask-probability

In the following we will make use of a formula giving the probability that

among the boys who have not asked, a particular boy will be the first among

them to ask.

For probabilities and desirabilities {pi}ni=1 and {xi}n−1i=1 ,

P (k is the first boy to ask)
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= pk

1− 1

2

∑
(j1)∈Mn,k,1

pj1 + · · ·+ (−1)n−1

n

∑
(j1,j2,...,jn−1)∈Mn,k,n−1

pj1pj2 . . . pjn−1

 ,

where

Mn,k,r = {(j1, j2, . . . , jr); {j1, j2, . . . , jr} ⊆ {1, 2, . . . n}\{k}; j1 < j2 < · · · < jr}.

For example, for n = 2,

P (1 is the first boy to ask) = p1

1− 1

2

∑
(j1)∈{(2)}

pj1

 = p1

(
1− p2

2

)

and

P (2 is the first boy to ask) = p2

(
1− 1

2
p1

)
= p2

(
1− p1

2

)
.

For n = 3,

P (1 is the first boy to ask)

= p1

1− 1

2

∑
(j1)∈{(j1);{j1}⊆{2,3}}

pj1 +
1

3

∑
(j1,j2)∈{(2,3)}

pj1pj2

 ,

= p1

(
1− 1

2
(p2 + p3) +

1

3
p2p3

)
,

For convenience, in the following, we write

fn,k (p1, p2, . . . pn) ≡ P (k is the first boy to ask)
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= pk

1− 1

2

∑
(j1)∈Mn,k,1

pj1 + · · ·+ (−1)n−1

n

∑
(j1,j2,...,jn−1)∈Mn,k,n−1

pj1pj2 . . . pjn−1

 ,

3 Approach

We propose an algorithm for deciding whether to accept or reject the invi-

tation of a given boy. We regard the girl’s problem as playing a sequence of

games. The first game presents a boy who has asked her, and n−1 who have

not. She has two available plays in this game: accept or reject his invitation.

If she accepts, the game is over and her payoff is equal to the desirability

of the accepted boy. If she rejects him, she is presented with a new game.

This game now consists of one of the remaining boys as the asker, and the

n − 2 boys who haven’t asked. We assume that the desirability values for

each of the n− 1 boys are unchanged. However, as we will see below, this is

generally not the case for the ask-probability values. She continues playing

this sequence of games, each with fewer boys than the previous one, doing

the appropriate Bayesian update on the probabilities when passing from one

game to the next. This continues until either she accepts some boy or no

boy remains who is willing to ask her.

Explicitly, the game begins, for the case of three boys, with the following

data:
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Boy xi pi

1 x1 p1

2 x2 p2

3 1 p3

If boy 1 asks first and she rejects him, the game becomes

Boy xi pi

2 x2
p2(3−p3)

p2(2p3−3)−3p3+6

3 1 (3−p2)p3
p2(2p3−3)−3p3+6

If boy 2 asks first and she rejects him, the game becomes

Boy xi pi

1 x1
p1(3−p3)

p1(2p3−3)−3p3+6

3 1 (3−p1)p3
p1(2p3−3)−3p3+6

If boy 3 asks first and she rejects him, the game becomes

Boy xi pi

1 x1
p1(3−p2)

p1(2p2−3)−3p2+6

2 x2
(3−p1)p2

p1(2p2−3)−3p2+6

To see why each boy’s ask-probability will, in general, vary from game

to game in the sequence, we give a simple example. Assuming the ask-

probability of each of the boys is 1
2
, the relative probabilities of any possible

series of invitations are represented by the entries in the table below. That

is, the probability of a series of invitations is proportional to the number of

its appearances in the table. ∅ is the case in which no boys ask, 12 means
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boy 1 asks first, then boy 2, but boy 3 doesn’t ask, and so on.

∅ 1 2 3 12 21 31 123

∅ 1 2 3 12 21 31 132

∅ 1 2 3 12 21 31 213

∅ 1 2 3 13 23 32 231

∅ 1 2 3 13 23 32 312

∅ 1 2 3 13 23 32 321

Now suppose, for instance, that boy 2 asks first. The table

2 21

2 21

2 21 213

2 23 231

2 23

2 23

represents the possibilities, given that boy 2 asked first, for the set of boys

who are willing to ask and in what order they would ask. The three entries

of 21 and the entries 213 and 231 represent the outcome that boy 1 would

eventually ask, for a total of 5 entries. Dividing that by the total of 14 equally

likely outcomes yields a conditional probability of 5
14
. Thus boy 2 having

asked first has slightly altered the probability that boy 1 would eventually

ask.
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3.1 The Algorithm

Each time a boy, say boy k, asks, she accepts boy k if the probability that no

more desirable boy will ask her is greater than or equal to 1
2
, else she rejects

boy k and the game continues. To put it another way, she should accept the

first boy for which it is not more likely than not that some better boy will

ask her.

Explicitly, she accepts boy k if and only if

P (boys k + 1, k + 2, . . . , n will not ask|boy k asks first) >
1

2

If she rejects boy k, the remaining n− 1 boys form, after the appropriate

reindexing of the desirabilities and Bayesian update of the probabilities, a

new problem of the same type, and the first of these boys to ask can be

accepted or refused according to a reapplication of the above criterion. This

iteration continues until some boy is accepted via the criterion, or all boys

who are willing to ask are refused.

This can be illustrated by the following simple example. Let n = 2, with

data {p1, p2} and {x1, 1}. Suppose boy 1 has asked.

P (boy 2 will not ask|boy 1 asked first)

=
P (boy 2 will not ask and boy 1 asked first)

P (boy 1 asked first)
=

p1(1− p2)

p1 − 1/2p1p2
=

2− 2p2
2− p2
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According to the criterion, she should accept boy 1 if and only if

P (boy 2 will not ask|boy 1 asked first) >
1

2

i.e.

2− 2p2
2− p2

>
1

2
,

which is equivalent to

p2 6
2

3
.

3.2 Bayesian Update

As mentioned before, the first boy that asks her will alter the probabilities

that the other boys will ask her eventually.

Proposition 3.1 The updated probability that boy j would eventually ask,

given that boy j has not yet asked and boy k asked first, is given by

pj|k =
fn,k (p1, p2, . . . , pj−1, 1, pj+1, . . . , pn)

fn,k (p1, p2, . . . , pj−1, pj, pj+1, . . . , pn)
pj.

Proof

P (boy j would eventually ask|boy k asked first)

=
P (boy j would eventually ask and boy k asked first)

P (boy k asked first)

=
P (boy k asked first and boy j would eventually ask)

P (boy k asked first)
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=
P (boy k asked first|boy j would eventually ask)P (boy j would eventually ask)

P (boy k asked first)
.

Since P (boy k asked first|boy j would eventually ask)

= fn,k (p1, p2, . . . , pj−1, 1, pj+1, . . . , pn) ,

P (boy j would eventually ask) = pj,

and P (boy k asked first) = fn,k (p1, p2, . . . , pj−1, pj, pj+1, . . . , pn) , we get that

P (boy j would eventually ask|boy k asked first)

=
fn,k (p1, p2, . . . , pj−1, 1, pj+1, . . . , pn)

fn,k (p1, p2, . . . , pj−1, pj, pj+1, . . . , pn)
pj.

3.3 The Acceptance Criterion

As we stated earlier, she should accept boy k if and only if

P (boys k + 1, k + 2, . . . , n will not ask|boy k asks first) >
1

2
.

Note that

P (boys k + 1, k + 2, . . . , n will not ask|boy k asks first)

=
P (boys k + 1, k + 2, . . . , n will not ask, and boy k asks first)

P (boy k asks first)

=

(
P (boy k asks first|boys k + 1, k + 2, . . . , n will not ask)

P (boy k asks first)

)
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·P (boys k + 1, k + 2, . . . , n will not ask)

=
P (boy k asks first|boys k + 1, k + 2, . . . , n will not ask)

P (boy k asks first)
(1−pk+1)(1−pk+2) . . . (1−pn)

=
fn,k (p1, p2, . . . , pk, 0, . . . , 0)

fn,k (p1, p2, . . . , pk, pk+1, . . . , pn)
(1− pk+1)(1− pk+2) . . . (1− pn)

4 A Detailed Example

We conclude with an example. Let the boys’ data be as in the following

table:

Boy xi pi

Al .6600 .8300

Ben .8700 .2700

Carl .8800 .5600

Don 1.0000 .8500

Suppose the first boy to ask her (in this fictitious scenario) is Carl. Having

observed Carl asking first, she does a Bayesian update of the probabilities

for Al, Ben and Don later asking and obtains

Boy xi p′i

Al .6600 .7586

Ben .8700 .2069

Don 1.0000 .7836

Now we consider the probability that some boy more desirable than Carl

will ask. Note that Carl’s desirability is .8800, so only Don is more desirable.
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The probability that Carl is the best boy who will ask, i.e. that Don will not

ask is 0.216374 < 1
2
, thus it is more likely than not that Carl is not the best

boy who will ask her, and thus he is rejected.

Now suppose Al asks next. Using the above data, having observed that

Al has asked, she does a Bayesian update of the probabilities for Ben and

Don later asking and obtains

Boy xi p′′i

Ben .8700 .1368

Don 1.0000 .6528

Now we consider the probability that some boy more desirable than Al

will ask. Note that Al’s desirability is .6600, so only Ben and Don are more

desirable. The probability that Al is the best boy who will ask, i.e. that

neither Ben nor Don will ask, is 0.307098 < 1
2
, thus it is more likely than not

that Al is not the best boy who will ask her, so he is rejected.

Suppose Don asks next. Since Ben’s desirability is less that Don’s, the

probability that Don is the best boy who will ask is 1.000000 > 1
2
, thus he is

accepted and the game ends.
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